
Math 1300: Calculus I 4.6 Applied Optimization

Objectives:

• Find a function that models a problem and apply the techniques from 4.1, 4.2, and 4.3 the find
the optimal or “best” value.

Suggested procedure:

Step 1. Draw a picture! Label variables and known quantities.

Step 2. Decide what quantity we want to maximize (or minimize).

Step 3. Find a formula for the quantity that we want to maximize (or minimize).

Step 4. Use constraints to turn our formula into an equation in one variable.

Step 5. Find the domain.

Step 6. Find the global minimum (or maximum).

(a) If we are looking in a closed interval: substitute endpoints and critical points into the
function and choose the largest (or smallest) value.

(b) If we are looking in an open interval: Hope there is only one critical point, show there is a
local maximum (or minimum) there, conclude it is also a global maximum (or minimum).

Step 7. Remember to answer the original question clearly and completely!

Example 1. Find two non-negative numbers whose sum is 200 and whose product is maximum.

Step 1. Let x and y be the two numbers. Then x+ y = 200, so y = 200− x. (If we want a picture we
can draw a rectangle with sides x and y = 200− x.)

Step 2. We want to maximize the product of x and y, (the area in the rectangle).

Step 3. P = xy

Step 4. p(x) = x(200− x) = 200x− x2

Step 5. The domain of p(x) is (0, 200) since x must be positive and y = 200− x must be positive.

Step 6. To find x so that this product is maximized, first find the derivative of p(x):

p′(x) = 200− 2x

Then we set the derivative equal to 0 and solve for x, with the result x = 100 To check if this
critical point, x = 100 is a maximum, we have two options:

(a) First Derivative Test: Construct a numberline for p′(x). This will show p′(x) changes
from positive to negative at x = 100, so there is a local maximum at x = 100. Since p′(x)
only changes sign once, p(100) is an absolute maximum.

(b) Second Derivative Test: p′′(x) = −2, so p(x) is always concave down. Thus, p(100) a
local maximum AND since there is only one critical point, a global maximum.

Step 7. So, x = 100 and y = 200− 100 = 100. The two numbers are 100 and 100.
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Example 2. The corners are cut our of an 81
2

′′× 11′′ piece of paper and it is folded into a box. What
size squares should be removed to maximize the volume?

Step 1. Draw a diagram. Suppose we label the side length of each removed square as x.

Step 2. We want to maximize the volume.

Step 3. Volume is given by
V (x) = (length)(width)(height)

Step 4.
V = (11− 2x)(8.5− 2x)(x) = (93.5− 39x+ 4x2)x = 93.5x− 39x2 + 4x3

Step 5. The length, width, and height all need to be positive, so we need x > 0, 11 > 2x, 8.5 > 2x.
So x is greater than 0 and less than 8.5/2 = 4.25. The domain is (0, 4.25).

Step 6. We can find the critical points of V (x) by taking the derivative and setting the resulting
derivative equal to 0:

V ′(x) = 93.5− 78x+ 12x2

0 = 93.5− 78x+ 12x2

x =
78±

√
782 − 4(12)(93.5)

2(12)
(Quadratic Equation)

x ≈ 1.585, 4.915

The only critical point in our domain is x ≈ 1.585, so if we can show V (1.585) is a local
maximum, it will also be an absolute maximum. Use the first or second derivative test to
show V (1.585) is a local maximum.

Step 7. The volume will be maximized if the squares removed have side length
78−

√
782 − 4(12)(93.5)

2(12)
≈

1.585 inches

2



Math 1300: Calculus I 4.6 Applied Optimization

Example 3. A rectangle is inscribed in the triangle with vertices (0, 0), (4, 0), and (0, 8) with one
side of the rectangle on lying on the x-axis and one side of the rectangle lying on the y-axis. What is
the maximum area of the rectangle?

Step 1. Draw the triangle and an example rectangle inside of the triangle. Label the sides of the
rectangle. In this solution we call the width x and the height y. The point of the rectangle on
the triangle’s hypotenuse has coordinates (x, y).

Step 2. We want to maximize the area of the rectangle.

Step 3. Area of the rectangle is given by A = xy.

Step 4. To write y in terms of x, we use the fact that (x, y) is on the hypotenuse of the triangle. If

the hypotenuse is extended to be a line, the equation for that line is y − 8 =
8− 0

0− 4
(x− 0), or

y = −2x+ 8. So,
A(x) = xy = x(−2x+ 8) = −2x2 + 8x

Step 5. The domain is (0, 4) since the width of the rectangle must be between 0 and 4.

Step 6. A′(x) = −4x + 8, so the only critical point is x = 2. Use the first or second derivative test
to show there is a local maximum at x = 2 and then justify why there is also an absolute
maximum at x = 2.

Step 7. The area is maximized when x = 2. The question asks what is the maximum area, so we
should compute what the area is when x = 2. A(2) = −2(2)2 + 8(2) = 8, so the maximum
area is 8 square units.
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Example 4. Find the point on the parabola y2 = 2x that is closest to the point (1, 4).

Step 1. Draw a graph of y2 = 2x and label (1, 4)

Step 2. Let (a, b) be a point on the parabola. We want to minimize the distance from (a, b) to (1, 4).

Step 3. The distance between (a, b) and (1, 4) is given by:

D =
√

(a− 1)2 + (b− 4)2

Step 4. Since (a, b) is on the parabola y2 = 2x, we know b2 = 2a and so a =
b2

2
.

D(b) =

√(
b2

2
− 1

)2

+ (b− 4)2

Step 5. b can be any real number, so the domain of D(b) is (−∞,∞).

Step 6. D′(b) = 1
2

((
b2

2
− 1

)2

+ (b− 4)2

)−1/2(
2

(
b2

2
− 1

)
(b) + 2(b− 4)

)
=

b3 − 8

2

√(
b2

2
− 1

)2

+ (b− 4)2

.

D′(b) = 0 only when b3 − 8 = 0. So, the only critical point is b = 2.
MAKE SURE to use the first or second derivative test to show there is a local minimum at
b = 2 AND justify that this is also an absolute minimum.

Step 7. The point (a, b) on the parabola y2 = 2x with minimum distance from (1, 4) is where b = 2,

so a =
22

2
= 2. So the point is (2, 2). (It’s a good idea to draw this point on your graph from

Step 1. to check that this is reasonable.)
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Example 5. A rectangular mural will have a total area of 24 ft2 which includes a border of 1 ft on the
left, right, and bottom and a border of 2 ft on the top. What dimensions maximize the total paintable
area inside the borders.

Step 1. Draw a rectangle contained in another rectangle. In this solution we call the width of the
outer rectangle x and the height of the outer rectangle y. Then label the width of the inner
rectangle as x− 2 and the height of the inner rectangle as y − 3.

Step 2. We want to maximize the area of the inner rectangle.

Step 3. The area of the inner rectangle is given by A = (x− 2)(y − 3)

Step 4. We know that xy = 24. So, y =
24

x
. Then we have the equation A(x) = (x− 2)

(
24

x
− 3

)
Step 5. The inner rectangle dimensions must be positive. (If they are positive, the outside dimensions

will be positive too.) So, we need x− 2 > 0 and
24

x
− 3 > 0. Solving these constraints we get

x > 2 and x < 8. So the domain is (2, 8).

Step 6. A′(x) = −3 +
48

x2
so we solve for the critical points x = ±

√
48

3
= ±4. There is only one

critical point in our domain: x = 4. So, use the 1st or 2nd derivative test to show there is a
local maximum at x = 4

√
3 and then justify that this is also a global maximum.

Step 7. The inner area is maximized when x = 4, so the outer dimensions that maximize area are 4

feet wide by
24

4
= 6 feet high. The corresponding inner dimensions are 2 feet wide by 3 feet

high.
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Example 6. A can is made to hold 1 liter of oil. Find the dimensions that will minimize the cost of
the metal to manufacture the can.
(Note: 1 liter is equivalent to 1,000 cubic centimeters.)

Step 1. Draw a can. This is a cylinder, so we label the dimensions: radius (r) and height (h).

Step 2. The cost of metal to manufacture the can depends on the surface area of the can. So, we
want to minimize the surface area of the cylinder.

Step 3. Surface area is given by SA = 2πr2+2πrh. (Note that this is the sum of two circle areas and the
area of a rectangle with height h and width 2πr, the circumference of the circle. Interestingly,
we can also derive this formula by differentiating V = πr2h and letting r′ = h′ = 1.)

Step 4. To rewrite h in terms of r, we will use the fact that the volume of the can is 1,000 cubic

centimeters. So if h and r are in cm, πr2h = 1, 000 so h =
1, 000

πr2
. So now we are trying to

minimize surface area, given as a function of r by:

SA(r) = 2πr2 + 2πr

(
1, 000

πr2

)
= 2πr2 +

2, 000

r

Step 5. The radius must be positive, so the domain is (0,∞).

Step 6. SA′(r) = 4πr − 2, 000

r2
. To find critical points:

0 = 4πr − 2, 000

r2

0 = 4πr3 − 2, 000

2000 = 4πr3

2, 000

4π
= r3

3

√
500

π
= r

Then be sure to use the 1st or 2nd derivative test to show this critical point is a local minimum
and then justify why it is a global minimum.

Step 7. The cost of metal for the can is minimized when r = 3

√
500

π
≈ 5.42 cm, so the height is

1, 000

π 3

√
500
π

2 = 2 3

√
500

π
≈ 10.84 cm.
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Example 7. A glass fish tank is to be constructed to hold 72 ft3 of water. The top is to be open. The
width will be 5 ft but the length and the depth are variable. Building the tank costs $10 per square
foot for the base and $5 per square foot for the sides. What is the cost of the least expensive tank?

Step 1. Draw a rectangular prism. The width should be labeled 5 ft. In this solution we will use the
label ` for length and d for depth.

Step 2. We want to minimize the cost of the tank. In this case, this is more complicated than mini-
mizing the surface area, since not all parts of the surface cost the same amount.

Step 3. First we find the cost for the sides. Two sides will be 5d square feet and two sides will be
`d square feet, so the total area for the sides is 10d + 2`dft2. The cost for the sides is $5 per

square foot, so the cost to build the sides is
(
10d+ 2`dft2

)(
5

$

ft

)
= 50d+ 10`d dollars.

Next we find the cost for the base: (5`ft)

(
10

$

ft

)
= 50` dollars.

So the total cost of the tank in dollars is given by C = 50d+ 10`d+ 50`

Step 4. We know the volume of the tank is 72 ft3, so 72 = 5`d and thus ` =
72

5d
. So

C(d) = 50d+ 10
72

5d
d+ 50

72

5d
= 50d+ 144 +

720

d
.

Step 5. All of the side lengths must be positive, so d > 0 and
72

5d
> 0. We know

72

5d
> 0 whenever

d > 0, so our domain is (0,∞).

Step 6. Our critical points are ±
√

14.4 so the only critical point in the domain is
√

14.4 ≈ 3.79. Be
sure to check if this is a local max or min and justify if it is a global extremum.

Step 7. We have found the depth d that minimizes tank costs, but the question asks ”What is the
cost of the least expensive tank?” so we need to find the cost of the tank when d =

√
14.4.

C(
√

14.4) = 50
√

1.4 + 144 +
720√
14.4

= 100
√

14.4 + 144 ≈ 523.47. So our final answer is ”The

cost of the least expensive tank is $ 523.47.
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Example 8. A baseball team plays in a stadium that holds 55, 000 spectators. with ticket prices at
$10, the average attendance has been 27, 000. Some financial experts estimated that prices should be
determined by the function p(x) = 19− 1

3000
x where x is the number of tickets sold. What should the

price per ticket be to maximize revenue?

Step 1. There’s no picture to be drawn for this one.

Step 2. We want to maximize revenue, the money coming in from ticket sales.

Step 3. The revenue is given by multiplying the cost per ticket by the number of tickets. So, R = px
where p is the price per ticket and x is the number of tickets sold.

Step 4. We’re given an equation for what price to charge if x people buy tickets, p(x) = 19− 1

3000
x.

So, R(x) =

(
19− 1

3000
x

)
x = 19x− 1

3000
x2.

Step 5. No more than 55,000 tickets can be sold. 0 tickets could be sold, but it doesn’t make sense to
sell a negative number of tickets. So the domain for x is [0, 55000].

Step 6. Since we have a continuous, differentiable function (it’s a polynomial!) on a closed interval,
there must be an absolute minimum, and it must be at an endpoint or critical point. We
already know the endpoints: x = 0, 55000, so let’s find the critical points.

R′(x) = 19− 1

1500
x so the only critical point is x = 28, 500. Next, we compare values of R(x)

at critical points and endpoints:

x R(x)
0 0

28,500 270,750
55,000 36,666.67

So, we can conclude that the absolute

maximum is $270,750 and the max occurs at 28,500 tickets sold.

Step 7. The question asks what price should be charged per ticket, so we still need to find the price
charged per ticket when 28,500 tickets are sold. p(28500) = 9.5. So $9.50 should be charged
per ticket to maximize revenue.
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